Saccadic compensation for smooth eye and head movements during head-unrestrained two-dimensional tracking.
نویسندگان
چکیده
Spatial updating is the ability to keep track of the position of world-fixed objects while we move. In the case of vision, this phenomenon is called spatial constancy and has been studied in head-restraint conditions. During head-restrained smooth pursuit, it has been shown that the saccadic system has access to extraretinal information from the pursuit system to update the objects' position in the surrounding environment. However, during head-unrestrained smooth pursuit, the saccadic system needs to keep track of three different motor commands: the ocular smooth pursuit command, the vestibuloocular reflex (VOR), and the head movement command. The question then arises whether saccades compensate for these movements. To address this question, we briefly presented a target during sinusoidal head-unrestrained smooth pursuit in darkness. Subjects were instructed to look at the flash as soon as they saw it. We observed that subjects were able to orient their gaze to the memorized (and spatially updated) position of the flashed target generally using one to three successive saccades. Similar to the behavior in the head-restrained condition, we found that the longer the gaze saccade latency, the better the compensation for intervening smooth gaze displacements; after about 400 ms, 62% of the smooth gaze displacement had been compensated for. This compensation depended on two independent parameters: the latency of the saccade and the eye contribution to the gaze displacement during this latency period. Separating gaze into eye and head contributions, we show that the larger the eye contribution to the gaze displacement, the better the overall compensation. Finally, we found that the compensation was a function of the head oscillation frequency and we suggest that this relationship is linked to the modulation of VOR gain. We conclude that the general mechanisms of compensation for smooth gaze displacements are similar to those observed in the head-restrained condition.
منابع مشابه
Saccadic compensation for smooth eye and head movements during head - 1 unrestrained 2 D tracking
11 12 Spatial updating is the ability to keep track of the position of world-fixed objects while we 13 move. In the case of vision, this phenomenon is called spatial constancy and has been 14 studied in head-restraint conditions. During head-restrained smooth pursuit, it has been 15 shown that the saccadic system has access to extra-retinal information from the pursuit 16 system to update the o...
متن کاملDo extraocular motoneurons encode head velocity during head-restrained versus head-unrestrained saccadic and smooth pursuit movements?
Microstimulation experiments in the superior colliculus1 and single-unit recordings from its target, the premotor saccadic burst neurons2 (SBNs, located in the paramedian pontine reticular formation), have shown that the saccadic burst generator encodes head as well as eye movements during head-unrestrained gaze shifts. There is also evidence suggesting that premotor circuits likely encode eye ...
متن کاملEye- and head movements in freely moving rabbits.
1. Eye- and head movements were recorded in unrestrained, spontaneously behaving rabbits with a new technique, based upon phase detection of signals induced in implanted coils by a rotating magnetic field. 2. Movements of the eye in space were exclusively saccadic. In the intersaccadic intervals the eyes were stabilized in space, even during vigorous head movements. Most of this stability was m...
متن کاملSound-localization performance in the cat: the effect of restraining the head.
In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately +/-25 degrees), head movements are necessary when orienting to targets at th...
متن کاملContribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
The role of the primate frontal eye field (FEF) has been inferred primarily from experiments investigating saccadic eye movements with the head restrained. Three recent reports investigating head-unrestrained gaze shifts disagree on whether head movements are evoked with FEF stimulation and thus whether the FEF participates in gaze movement commands. We therefore examined the eye, head, and ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2010